TEC© © Westinghouse

A510
 PLC - Addendum

1.0 Built-in PLC Function

The PLC ladder logic can be created and downloaded using the TECO Link software.

1.0.1 Basic Command

	L	A	\checkmark	P	H1	\cdots	NO / NC
Inputs					1	i	11~18 / i1~i8
Outputs	Q	Q	Q	Q	Q	q	Q1~Q2 / q1~q2
Auxiliary command	M	M	M	M	M	m	M1~MF / m1~mF
Special registers							V1~V7
Counter function	C				C	c	$\mathrm{C} 1 \sim \mathrm{C8} / \mathrm{c} 1 \sim \mathrm{c} 8$
Timer function	T				T	t	T1~T8 / t1~ 8
Analog comparison function	G				G	g	G1~G8 / g1~g8
Operation control function	F				F	f	F1~F8 / f1~f8
summation and subtraction function	AS						AS1~4
Multiplication and division function	MD						MD1~4

Description of registers

V1: Set frequency Range: $0.1 \sim 1200.0 \mathrm{~Hz}$
V2: Operation frequency
Range: $0.1 \sim 1200.0 \mathrm{~Hz}$
V3: Al1 input value
Range: 0~1000
V4: Al2 input value
Range: 0~1000
V5: Keypad input value
Range: 0~1000
V6: Operation current
Range: 0.1~999.9A
V7: Torque value
Range: 0.1~200.0\%

Command	Upper Differential	Lower Differential	Other command symbol
Differential command	D	d	
SET command			A
RESET command			\vee
P command			P

Open circuit	"" "	
Short circuit	"--"	

Connection symbol	Definition
-	Connect components on the left and right side
\perp	Connects components on the left , right and top side
+	Connects components on the left , right , top and bottom side
$工$	Connects components on the left , right and bottom side

1.0.2 Basic Command Function

© $D(d)$ command function
Example 1: I1-D - [Q1

I1	OFF		ON
D OFF OFF ON OFF O1 OFF ON	New scanning cycle		

Example 2: i1-d - [Q1

[1'	OFF	ON		OFF
I1' is the inverse logic of i1				
$i 1$	ON		OFF	ON
d1	OFF	ON		OFF
Q1	OFF	$\xrightarrow[\text { ON }]{4}$	New	OFF

© NORMAL(-[) output
I1-[Q1

11	OFF	ON	OFF
Q1	OFF	ON	OFF

© SET (A) output
11-A Q1

11	OFF	ON	OFF
Q1	OFF	$\boxed{\text { ON }}$	

© RESET (\checkmark) output
I1—— \vee Q1

I1	OFF	ON
OFF Q1 ON	OFF	

© P output
i1-PQ1

1.0.3 Application Functions

1: Counter Function

Symbol	Description
(1)	Counter mode $(1 \sim 4)$
(2)	UP/Down counting modes can be set by (I1~f8).
	OFF: Count up $(0,1,2,3 \ldots)$
	ON: Count down $(\ldots 3,2,1,0)$
(3)	Use (I1~f8) to reset counting value
	ON: Internal count value is reset and counter output © is OFF
	OFF: Internal counter value retained
(4)	Internal counter value
(5)	Counter compare value (AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7,constant)
(6)	Counter output (C1 to C8, there are a total of 8 counters)

Counter modes:

Mode 1: Counter value is locked to the set value. The value will not be retained when the power is cut off.
Mode 2: Counter value is not locked. The value will not be retained when the power is cut off.
Mode 3: Counter value is locked. The value will be retained when the power is cut off.
Mode 4: Counter value is not locked. The value will be retained when the power is cut off.

Counter mode 1

Example:

5	20																	
4	0	0	0	1	1	2	2				19	19	20	20	20	0	20	20
Counter input pulse	OFF																	
2							ON										ON	
3	ON						OFF										ON	
6	OFF								ON	N				ON		OFF		

Input from ladder program

Counter mode 2

Note: In this mode the internal counter may increase past the counter compare value, unlike mode 1 where the internal counter value is limited to the counter compare value.
(1) Counter mode 3 is similar to the counter mode 1 , with the exception that the counter value is saved when the drive is powered down and reloaded at power up.
(2) Counter mode 4 is similar to the counter mode 2, with the exception that the counter value is saved when the drive is powered down and reloaded at power up.

5		20									
4	Mode 1 \& 2	1	1	2	2		0	1	1	2	2
4	Mode 3 \& 4	1	1	2	2	3	3	4	4	5	5

Counter input pulse

\square

Power switch

2: Timer Function

Symbol	Description
(1)	Timer mode (1-7)
(2)	Timing unit: 1:0.0~999.9 second
	2:0~9999 second
	3:0~9999 minute
(3)	Use (11~f8) to reset timing value
	ON: Internal timing value is reset and timer output © is OFF
	OFF: Internal timer stays running
(4)	Internal timer value
(5)	Timer set value (AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant)
(6)	Timer output (T 1 to T 8 , there are a total of 8 timers)

Timer mode description:
(1) Timer mode 1 (ON-delay Timer mode 1)

Example:

Input from the Ladder Program

Input under function Program Mode Timing unit is 0.1 second Timer Mode1

(2) Timer mode 2 (ON-delay Timer mode 2)

T= timer set value

(3) Timer mode 3 (OFF-delay Timer mode 1)

T= timer set value
(4) Timer mode 4 (OFF-delay Timer mode 2)

(5) Timer mode 5 (FLASH Timer mode 1)

(6) Timer mode 6 (FLASH Timer mode 2)

(7) Timer mode 7 (FLASH Timer mode 3)

3: Analog comparator function

Symbol	Description
(1)	Analog comparator mode (1~3)
(2)	Input comparison value selection (AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7)
(3)	Current analog input value
(4)	Set the reference comparison value (Upper limit) (AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant)
©	Set the reference comparison value (lower limit) (AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant)
(6)	Comparator output (G1 to G8, there are a total of 8 comparators)

The description of analog comparison mode:
(1) Analog comparison mode 1 (3) (5), © ON)
(2) Analog comparison mode 2 (3) \geq © , © © ON)
(3) Analog comparison mode 3 (${ }^{(5) \leq(3)} \leq$ (4), © ON)

Input comparison value selection (V1~V7)

(1) Input comparison value selection = V1: Set frequency
(2) Input comparison value selection = V2: Operation frequency
(3) Input comparison value selection = V3: Al1 input value
(4) Input comparison value selection = V4: A12 input value
(5) Input comparison value selection = V5: Keypad input value
(6) Input comparison value selection = V6: Operation current
(7) Input comparison value selection = V7: Torque value

4: Operation control function

Symbol	Description
(1)	Forward /Reversal control can be set by (11~f8) OFF: Forward(FWD) ON: Reversal(REV)
(2)	Speed terminal control can be set by (11~f8)
	OFF: Operation based on (3) set frequency
	ON : Operation based on frequency of speed (4)
(3)	Set frequency (can be constant or V3, V4, V5)
(4)	Speed frequency (can be constant or V3, V4, V5)
(5)	Acceleration time (ACC Time)
©	Deceleration time (DEC Time)
(7)	Operation command output (F1 to F8, there are a total of 8 operation control functions)

Example:

Input from the Ladder Program

5: Summation and subtraction functions

RESULT (calculation result) $=\mathrm{V} 1+\mathrm{V} 2-\mathrm{V} 3$

Symbol	Description
(1)	Calculation result : RESULT
(2)	Add V1(AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant)
(3)	Add V2(AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant)
(4)	Subtract V3(AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant)
(5)	Coil output of error signal (M1~MF)
(6)	Addition and subtraction modes number (AS1~AS4)

6: Multiplication and division modes

RESULT (calculation result) =V1*V2/V3

Symbol	Description
(1)	Calculation result : RESULT
(2)	Multiplier V1(AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant)
(3)	Multiplier V2(AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant)
(4)	Divisor V3(AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant)
(5	Coil output of error signal (M1~MF)
$(6$	Multiplication and division modes number (MD1~MD4)

TECO © Westinghouse

 INVERTER

 INVERTER}

A

Distributor

