TOTALLY ENCLOSED FAN COOLED

DESIGN FEATURES AND CONSTRUCTION

All TECO-Westinghouse Totally Enclosed Fan Cooled, T-Frame squirrel-cage induction motors are designed, manufactured and tested to meet or exceed the latest NEMA, IEEE and CSA standards.

- Motors are dual nameplated for 60 Hz (230/460V) and 50 Hz (190/380V) frequencies; 1.0 S.F. at 50 Hz.
- NEMA Design B
- 36 month warranty from date of manufacture
- UL recognized, Class F non-hygroscopic insulation system with heavy heat resistance enameled copper wire to provide longer winding life and reliability. Inverter rated; see below.
- Continuous rating with 1.15 Service Factor (1.00 Service Factor at 50 Hz)
- Design B torques as a minimum
- Class B temperature rise @ 40° C ambient
- Interchangeable F1 and F2 mounting
- Dual drilled feet - longer frame (i.e. 145T drilled also for 143T through 449T frame)
- Bi-directional rotation
- Dynamically balanced, die-cast aluminum rotor reduces overall system vibrations
- Pressed steel main conduit box is 90° rotatable, oversized and fully gasketed
- Neoprene lead and conduit box gaskets prevent the entry of moisture and contaminants
- Grounding terminal inside main box
- Rugged cast iron frame and end brackets for rigidity and excellent corrosion resistance
- Provisions for breather drains for vertical mount up or down as standard
- Rolled steel fan cover
- External fan is corrosion-resistant and also non-sparking
- Stainless steel nameplate; Zn plated hardware
- C-face (143T-449T) and D-flange (143-184 & 254T-449T) conversion kits are available
- Oversized, double shielded vacuum degassed ball bearings are for frames 140T-280T and open bearings with regreaseable provisions are for frames 280TS, 320T and larger.
- Rubber flinger provided on DE for frames 140T to 280T
- Labyrinth type metal flinger on both ends on frames 280TS, 320T and larger
- Suitable for Class I, Division II, Groups B, C, and D; Temperature Code T3C
- UL recognized, DOE certified, CSA approved, CE Marked, and EISA compliant
- Inverter rated per NEMA MG 1, Part 31
- S. F. will be 1.0 when applied on inverter
- Suitable for inverter use per NEMA MG-1, Part 3.4.4.2
- Inverter duty wire capable of withstanding voltage spikes up to 2200V
- Insulated bearings are available as an option. If not purchased, precautions should be taken to eliminate shaft currents that may be imposed on the motor by use with an inverter.
- Speed ranges 20:1 VT, 10:1 CT
- 9 leads for 5 HP and below, 12 leads for 7.5 - 125 HP, and 6 leads for 150 HP and higher.
- Available from 1 HP - 200 HP, footed, footed C-face and round body C-flange.

Note: Precautions should be taken to eliminate or reduce shaft currents and/or winding stresses that may be imposed on the motor by the inverter, as stated by NEMA MG-1, Part 31.
MAX-PE™ PERFORMANCE DATA

<table>
<thead>
<tr>
<th>HP</th>
<th>FULL LOAD RPM</th>
<th>FRAME SIZE</th>
<th>EFFICIENCY (%)</th>
<th>POWER FACTOR (%)</th>
<th>CURRENT</th>
<th>TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1745</td>
<td>143T</td>
<td>85.5</td>
<td>82.5</td>
<td>80.0</td>
<td>81.5</td>
</tr>
<tr>
<td>2</td>
<td>1740</td>
<td>184T</td>
<td>85.0</td>
<td>84.0</td>
<td>80.0</td>
<td>85.0</td>
</tr>
<tr>
<td>1.5</td>
<td>1730</td>
<td>184T</td>
<td>86.5</td>
<td>84.0</td>
<td>85.5</td>
<td>85.5</td>
</tr>
<tr>
<td>3</td>
<td>1755</td>
<td>184T</td>
<td>89.5</td>
<td>87.5</td>
<td>89.5</td>
<td>89.5</td>
</tr>
<tr>
<td>4</td>
<td>1750</td>
<td>184T</td>
<td>92.5</td>
<td>91.0</td>
<td>92.5</td>
<td>92.5</td>
</tr>
<tr>
<td>5</td>
<td>1745</td>
<td>184T</td>
<td>85.0</td>
<td>85.0</td>
<td>85.0</td>
<td>85.0</td>
</tr>
<tr>
<td>6</td>
<td>1740</td>
<td>184T</td>
<td>85.0</td>
<td>85.0</td>
<td>85.0</td>
<td>85.0</td>
</tr>
<tr>
<td>7.5</td>
<td>1755</td>
<td>184T</td>
<td>92.5</td>
<td>91.0</td>
<td>92.5</td>
<td>92.5</td>
</tr>
<tr>
<td>10</td>
<td>1750</td>
<td>184T</td>
<td>92.5</td>
<td>91.0</td>
<td>92.5</td>
<td>92.5</td>
</tr>
<tr>
<td>15</td>
<td>1765</td>
<td>184T</td>
<td>92.5</td>
<td>91.0</td>
<td>92.5</td>
<td>92.5</td>
</tr>
<tr>
<td>20</td>
<td>1760</td>
<td>184T</td>
<td>92.5</td>
<td>91.0</td>
<td>92.5</td>
<td>92.5</td>
</tr>
<tr>
<td>35</td>
<td>1765</td>
<td>184T</td>
<td>92.5</td>
<td>91.0</td>
<td>92.5</td>
<td>92.5</td>
</tr>
<tr>
<td>50</td>
<td>1770</td>
<td>184T</td>
<td>92.5</td>
<td>91.0</td>
<td>92.5</td>
<td>92.5</td>
</tr>
<tr>
<td>75</td>
<td>1775</td>
<td>184T</td>
<td>92.5</td>
<td>91.0</td>
<td>92.5</td>
<td>92.5</td>
</tr>
<tr>
<td>100</td>
<td>1780</td>
<td>184T</td>
<td>92.5</td>
<td>91.0</td>
<td>92.5</td>
<td>92.5</td>
</tr>
</tbody>
</table>

Notes:
1. The data shown is typical values based on test according to IEEE standard 112, method B.
2. Breakdown & locked rotor torques are shown as average expected values.
3. Efficiency, power factor, speed and torque are the same for other voltages.
4. Tolerance according to NEMA MG1-12 & IEC60034-1.
5. Data subject to change without notice.